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Abstract 
 

We measured the period of oscillation, P, of a rigid, 1-metre long bar as a function of 
distance, l, of the point of suspension from the centre of gravity. The observed curve of 
P versus l agrees within experimental error with a curve calculated from simple theory, 
although in the region of the minimum values of P, the theoretical curve presents values 
that are systematically about 1% too low. This deviation is not consistent with viscous 
effects proportional to the angular velocity of the bar and probably arises because of a 
more complex experimental damping mechanism. As expected from theory, the graph 
of P2l versus l2 is linear and indicates a value for the radius of gyration of the bar which 
agrees within 1% with the value of 28.9 cm calculated from the geometry of the bar. We 
also determined the acceleration due to gravity to be 
 

g = 971 ± 8 cm/s2. 
 

The various disagreements between the theoretical and experimental results do not 
exceed ± 1% and are attributed to damping mechanisms not considered in the simple 
theory. 
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Introduction† 
 
A compound pendulum is a rigid body swinging in a vertical plane about any 
horizontal axis passing through the body. Pendulums have many practical applications 
including timekeeping and measuring gravitational field strength. The simple 
pendulum is treated in many elementary physics texts but is an idealization which does 
not include the mass of the arm which supports the swinging bob. Newman and Searle 
(1951, 22-23) have developed a theoretical treatment of the compound pendulum based 
on Newton�s laws. In order to see if this simple theory will allow accurate analysis of 
real pendulums, we carried out an experimental investigation of a compound 
pendulum, focusing on the dependence of P on l, where P is the period for small 
oscillations of the pendulum when the distance between the centre of gravity and the 
axis of rotation is l. In this laboratory report, we present the results of this experiment 
and compare our experimental results with the theory of Newman and Searle 
 
 
Theory 
 
According to Newman and Searle (1951, 22-23), the period, P, of a compound 
pendulum is 
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where g is the acceleration of gravity and k is the radius of gyration, which is defined by 
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where ρ is the density of the material of the pendulum at a distance, r, from the centre 
of gravity. 
 
Equation 1 applies if the damping is negligible and if α, the angular amplitude of 
oscillation, is infinitely small. When α is finite, the period is given by 
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† This sample lab report was originally written by A. Curzon (SFU Department of Physics) in 1993. It was 
updated for style and format in 2001 by  S. Stevenson and S. Whitmore (SFU School of Engineering 
Science) and M. Chen (SFU Department of Physics).  
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If we assume that the damping force is MR(k2+l2)ω where ω is the angular velocity of the 
pendulum, M is its mass, and R is a constant, then according to Stephens and Bate 
(1950, 358), the period of the damped motions is  
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When the damping is small, R2/4<<lg/(k2+l2), and in this case, we can use equations 4 
and 1 to obtain the relation 
 
 223 32/ πRDPPDP =− . (5) 

 
 

Experimental Procedure 
 
The compound pendulum used in the present experiments consists of a rectangular iron 
bar 100 cm long х 3.80 cm wide x 0.95 cm thick in which a number of holes each 0.47 cm 
in diameter have been drilled with 5 cm between the centres of adjacent holes (see 
Figure 1). The axes of the holes are perpendicular to the face of the largest area of the 
bar, and the axis of one of the holes (A) passes through the centre of gravity of the bar. 
In the current experiments, the bar was suspended by means of an axle which passed 
through one of the holes and which was supported on a ball bearing mount so that the 
rod could oscillate in a vertical plane with a minimum of friction at the bearing. 
 

 
 

Figure 1: The Compound Pendulum 
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The period of oscillation was obtained by timing twenty swings with a stop watch. To 
obtain information about errors, several such sets of readings were obtained, and the 
period, P, was calculated by averaging. The amplitude of oscillation was kept below 10º 
to ensure that the period of oscillation was within 0.2% of the period for infinitely small 
oscillations (see equation 3). The distance, l, between the axes of holes A and B was 
measured with a metre ruler, enabling us to determine l within 1% accuracy. 
 
 
Results and Discussion 
 
Figure 2 presents a graph of P versus l. 
 

 
 
Figure 2: Graph of P versus l for a compound pendulum where P is the period in 

seconds and l is the distance in cm between the centre of gravity of the 
pendulum and the point of suspension. (A solid line indicates calculated 
values; points with error bars indicate experimental results.) 

 
 

By differentiation of equation 1, it is easily shown that the minimum value of P is  
 
 gkP /22min π= . (6) 

 
From Figure 2, we obtain 
 
 Pmin= 1.54 ± 0.01 s; hence, 
 
 k = 29.5 ± 0.5 cm, (7) 
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where we have used the value of  
 
 g = 981 cm/s2 (8) 

 
for the acceleration of gravity. 
 
Equation 1 has two solutions, l1 and l2, for a fixed value of P. Algebraic manipulations of 
the equation demonstrate that  
 kll =21 . (9) 

 
When P = 1.58 s, the observed values for l were l1 = 42.5 ± 0.01 cm and l2 = 20.0 ± 0.1cm. 
These values provide the result, k = 29.2 ± 0.1 cm, which is in reasonable agreement 
with the value of k obtained from Pmin (equation 6). 
 
When equation 2 is applied to a uniform bar of width, a, and length, b (see Figure 1), the 
result is  
 
 k2 = a2/12 + b2/12. (10) 

 
In the present experiments, the values of a and b were 3.80 ± 0.01 cm and 100.0 ± 0.1 cm, 
respectively. Hence, the calculated value of k is 
 
 k = 28.9 ± 0.01 cm. (11) 

 
For simplicity, this calculation neglects the presence of holes. When the holes are 
considered, the calculated value of k is reduced but remains within 1% of that given in 
equation 11. 
 
The curve shown in Figure 2 was calculated using equations 1, 7, and 8. The calculated 
and measured values of P agree within 1% or less, with the biggest discrepancy being 
observed in the region of Pmin, where the calculated values are consistently low. This 
discrepancy cannot be explained in terms of viscous damping proportional to the 
angular velocity of the bar because as equation 5 demonstrates, the discrepancy 
between the observed damped period, PD, and the undamped period, P, should 
decrease as PD decreases. The difference in the calculated and observed results may be 
due to damping in the roller bearing.‡ 
 
Equation 1 may be rewritten in the form 
 
                                                 
‡ Note that in a scientific paper, you must produce evidence for this sort of conjecture. For example, the 
experiment should be repeated after the bearing has been lubricated. However, in an elementary 
laboratory, you lack the time to follow up all possible explanations. Despite this limitation, you must 
nevertheless make an effort to determine plausible explanations for discrepancies. 
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This equation indicates that the graph of P2l versus l2 should be a straight line of slope 
4π2/g and intercept 4π2k2/g on the P2l axis as illustrated in Figure 3. 
 

 
 

Figure 3: Graph of P2l versus l2 for a compound pendulum. 
Slope = 0.0404 ± 0.0004 s2/cm. 
Intercept on the lP2 axis = 35.4 ± 0.4 cm2/s. 

 
 
Figure 3 shows that the graph of P2l versus l2 is a straight line whose slope and intercept 
on the P2l axis lead to the values 
 
 k = 28.9 ± 0.04 cm (13) 

 
 g = 971 ± 8 cm/s2. (14) 

 
The value of k agrees well with the calculated result (see equation 11), and g is close to 
the accepted value of 981 cm/s2. In Figure 3, the majority of the length of the straight 
line has points where P is not close to Pmin  (because P2l is plotted). Hence, k is largely 
determined by points having P in excess of Pmin. Figure 2 shows that the calculated 
values of P agree best with the experimental values for P in excess of Pmin. This fact 
explains why the straight line graph gives a value of k that agrees well with the 
calculated value (see equations 11 and 13). Similarly, the difference between the k values 
given by equations 7 and 11 occurs because the value given in equation 7 depends on 
the observed Pmin, which is not the same as the result calculated from simple theory. 
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The random errors in the times and distances measured in the present experiments 
were about ± 1%. We used the range of possible straight lines that could be drawn in 
Figure 3 to fit the data in order to obtain the errors given in equations 13 and 14. In 
other cases, we used the standard rules for combining errors.  
 
As noted previously, the measured values of P are systematically about 1% too high 
when P has values near Pmin. This result is probably due to friction at the bearing and 
not due to any fundamental limitation of the theory. Therefore, we can reasonably 
assert that this experiment demonstrates that the behaviour of a compound pendulum 
is in accord with Newton�s laws of rotation. 
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